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ABSTRACT 

Several necessary and sutlicient conditions are given for the existence of a 
o'-finite invariant measure for a positive operator on L=. They are of ~r-type : the 
entire space is an increasing union of sets Xk each of which is well-behaved. 

In a famous article [6], T. E. Harris gave a simple probabilistic condition for 

the existence of a it-finite invariant measure for a discrete parameter Markov 

process with general state space. In fact, the Harris condition proved sufficient 

for the development of the theory of such processes, entirely analogous to the 

theory of discrete-state space processes (see in particular Orey's book [17]). On 

the other hand, an analytic translation of the Harris condition (cf. [9], [4], [10]) 

led to a parallel development of the operator ergodic theory of Harris processes, 

culminating in elegant books of Foguel [5] and Revuz [21]. Shlomo Horowitz 
contributed to this development the interesting papers [7], [8], and others. 

The analytic formulation of the Harris condition consists in assuming that the 

Markov transition probability generates an irreducible conservative L1 operator 

T, preserving the integral, hence necessarily a contraction, the adjoint of which 

T* = V possesses something of a beginning of a density: see the condition (NS) 

below. The assumption that T - -  or equivalently V - -  is a contraction was 

weakened by D. S. Ornstein and the second-named author [20] to 

(B) lim inf I V~h I < ~ a.e. for each h E L~. 

In the present paper we show that (B) is not necessary for the existence of an 

equivalent invariant measure, and we give several weaker conditions that are 
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both necessary and sufficient. These conditions are of 'sigma' type, by which we 

mean that the entire space X is a countable increasing union of sets Xk each of 

which is in a certain sense well-behaved. Thus the condition below closest to (B) 

is (3') which asserts that for each k, liminf I V"hl<oo a.e. on Xk for each 

measurable function h 'beaten by lxk', i.e., such that there exists integers K and 

N with I h I <-- KEi~-N Vi lxk. Another  necessary and sufficient condition is that for 

each k and each measurable set B contained in Xk, the ratio 1RV n 1B/Ei_~. V ~ 1B 

converges to zero in measure; this can be approximately described as a condition 

sigma-C, where C is the Chacon-Ornstein lemma ([1], lemma 2). There  is also 

below a condition sigma-C where C is a version of Orey's theorem ([16], [11]). It 

is easy to understand why such conditions are necessary: in presence of an 

infinite invariant measure, a change of measure renders the considered operator  

a contraction to which the Chacon-Ornstein lemma or Orey's  theorem are 

applicable. In fact, we pass here through the dual operator,  but the theory is 

entirely symmetric, and to every condition stated in terms of V there is a 

symmetrical one stated in terms of 7'. Also, the initial setting need not be the 

usual L 1 - L ~ ;  we write the paper in terms of Lp-spaces 1 =<p __<oo, but the 

arguments are valid for larger classes of measure function spaces with an integral 

representation of linear functionals to which Fubini's theorem is applicable. The 

assumptions made on the operator:  'conservative' and 'irreducible' ( =  ergodic), 

are still sufficient, if properly defined, but they may be more difficult to verify. 

(These two notions together are called 'regular'.) Thus already in the case of L2, 

in the absence of Hopf 's  maximal ergodic theorem, it is necessary to assume that 

T (or V) acts 'conservatively' on each positive function, while in L~ this 

property is to be verified for only one function. 

In [20] the sufficiency of (B) is shown using Ornstein's ergodic theorem [18], an 

abstract form of the Chacon-Ornstein theorem [1]. A modification of the 

argument in [20] could also prove the sufficiency of (3) and (3') below, but 

probably not that of other conditions. Our proofs are simple, but not 'construc- 

tive': we use Banach limits. It is almost certain that other, longer proofs could be 

found, which would be more 'constructive'. 

Section 1 below gives definitions and establishes some technical lemmas. 

Section 2 proves the main theorem. Section 3 gives an example where the 

condition (B) fails but there exists an invariant measure. 

1. Transit ion measures  and small  sets 

Let X be an abstract set, M a countably generated o'-field of subsets of X, m a 

o--finite measure on M. All sets and functions appearing below are assumed 
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measurable;  they are considered equal if they are equal m-a lmost  everywhere 

(a.e.); the words a.e. may or may not be omitted. Let V(x, A)  be a transition 
measure, i.e., a map V: X x s¢--~ R+ U { + oo} such that: 

V(x, .) is a positive tr-finite measure for each fixed x E X;  

V(., A )  is an ~ - m e a s u r a b l e  function taking values 

in R+ U { +  ~} for each fixed A E ,~ .  

A transition probability is a transition measure such that V(x, X )  = 1 for every 

X. 

We assume that V(x,A) is null-preserving, that is such that if A E ,if, then 

m (A)  = 0 implies V(x, A )  = 0 a.e. We also assume that there exists a number  q, 

1 =< q = ~, such that for every f E L~, the function Vf defined by 

Vf(x) = f V(x, dy)f(y), x E X, 

is an element of L~. Define inductively transition measures as follows: 

V°(x, A )  = 1A(x) 

V°(x,a)= f v o '(x, dy)V(y,A),  n = 1 , 2 , . . . .  

The transition measure V also induces an L e operator  T, where 1/p + 1/q = 1: 
+ 

If g @ Lp, the measure y on M defined by 

7 ( a )  = f g(x)V(x, a )m (dx) 

is o'-finite; since y . ~ m ,  we may set Tg=dy/dm. If q=oo, g E L S ,  Tg is 

integrable because of the assumptions made on V(x, A). If 1 -< q < ~, Tg defines 

in an obvious way a positive linear functional on Lq ; hence Tg E L e. We say that 

the transition measure V(x, A) induces the Lq opera tor  V and the L e opera tor  

T. Furthermore,  

Vf E L,, Vg E Le, f (Vf)gdm = ( fTgdm. 

We still denote  by V the extension of the opera tor  V to the set of positive 

measurable functions ~ ÷, defined as follows: V(l im/~f , )  = lim/~ Vf,. Similarly T 

extends to d//+. The duality relation still holds for the extended operators.  

For each fixed n > 0 and x, write the Lebesgue decomposit ion of V"(x, .) 
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VA ~ ,  V " ( x , A ) =  fA d , (x ,y)m(dy)+ VT(x,A),  

where VT(x,. ) _L m, and d,(x, y) is the n-s tep density function. We may and do 

assume that the densities d, are jointly measurable and chosen so that for each x 

and y in X, and all integers n, m, 

d,+m(x, y) >= f d,~(x, z)d,(z, y)m(dz)  

(see e.g., Orey [17]). 

We assume that the transition measure V(x ,A)  satisfies the following 

non-singularity assumption (NS): 

(NS). There exists a non-null set G and an integer 

no > 0 such that for each x E G, m {y I d,o(X, y) > 0} > 0. 

If S is an operator ,  let $® = I + S + S z + • • -. An operator  S on L, is called 

irreducible if for any non-null f in L,* one has S~f > 0 a.e. Given f ~ L ,  +, we 

denote by St the class of functions h ~ L, which "can be beaten by f " ,  i.e., such 

that I h I <= a E~<nS~f, for some positive number  c~ and some integer N. We write 

SB for $1,. We call a function e E L +, smallforS if e E Sf for every f E  L ,  + with 

support  intersecting the support of e. We call a set B small for S if 1B is small for 

S. 
We want to show that under  the assumptions made on the transition measure 

V(x, A) ,  X is a union of sets small for the operators  T and V. It is easy to see 

that T is irreducible if and only if V is irreducible; then also the transition 

measure V(x, A )  is called irreducible. 

The following lemma gives a sufficient condition (in terms of densities) for two 

sets A and B to be small for the operators  T and V. 

1.1. LEM~In. Let V(x, A )  be an irreducible transition measure. Let A and B be 
non- null sets such that there exists a positive number a and an integer N satisfying 

V x E A ,  V y E B ,  ~ d,(x,y)>=a. 
i < N  

Then A is small for V and B is small for T. 

P~ooF. Let f ~ L~ be a non-null function with support included in A, and let 

k be such that f ' =  inf(Vk/, 1B)~0 .  For any x E A, 
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v'[(x)>- VT(x) 
i < N + k  i < N  

oL 
>- a~ f'(y)m(dy)= a >0.. 

Hence Ei<N÷kVf=al,~, SO that A is small for V. Let g ~ L p  be a non-null 

function with support included in B, and let M be such that g ' =  

inf(TMg, 1A)#0.  For any subset D of B, 

fo (~<~+M T'g) dm >= fo (~<N T~g') dm -~ fx g'(x) [~<N W(x,D)]m(dx) 

>= fA g'(x)[fo Z d'(x'y)m(dy)]m(dx)>=am(D)fA g'(x)m(dx). 

Since this inequality holds for every D CB, we deduce that Y.~<N+MT~g >- 
afAg'(x)m(dx) on B. This proves that B is small for T. [] 

Notice that the above proof shows that if B is a non-null set such that there 

exists a positive number a and an integer N satisfying E~<~di (x, y)=> a for every 

x and y in B, then B is small for T and V (without any irreducibility 
assumption). 

1.2. LEMMA. Let V(x, A) be an irreducible transition measure satisfying the 
(NS) condition. Then there exists a non-null set G such that for every x E G, 
E,d,(x, y) > 0 a.e. 

PROOf. Let G be the non-null set and no the integer given in the (NS) 

condition. For all integers n and i and every x, the measure 

A ~ f dr (x, y) V ~ (y, A)m (dy) is absolutely continuous with respect to m, and 
dominated by Vn+'(x, .); therefore 

fA d,÷,(x,y)m(dy)>- f d~(x,y)V'(y,A)m(dy), A 6 , d .  

We now have 

fA i~Nd"°÷~(x'y)m(dy)>= f d,(x ,y)[~<~ V'(y,A)]m(dy). 

Let r e ( A ) > 0  and x E G;  by (NS), fAE,~od,(x,y)m(dy)>O. [] 
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1.3. THEOREM. Let V(x, A)  be an irreducible transition measure satisfying 
(NS). Then X can be represented as a countable disjoint union of sets X~, such that 
each X~ is small for T and V. 

PROOF. Let G be the non-null set given by Lemma 1.2; we may and do 

assume m (G)  < oo. We will show that the assumptions of Lemma 1.1 are satisfied 

with A = B a non-null subset of G. For any integer 1" and any x E G, set 

Gj(x)= {y E G I~< j d~(x,y)> l//}. 

For any x E G there exists a smallest integer i =  i(x) such that m[G,(x)]>= 
(7/8)m(G). Set Ej = { x E G i i ( x ) = j } .  Since G = Z E i ,  there exists M such 

that m(EI+...+EM)>=(7/8)m(G); set E = E I + . . . + E M .  For x E E ,  

Gi(x)(x) C GM(x), hence m [G~(x)  n E] >= m (E) - m (G\G~(x)) >- (7/8)m (G)  - 

(1/8)m (G)_>-- 3/4m (E). Let 

H = / ( x , y ) E  E x E I ~, d,(x, y )> a/M I, 
k i < M  ) 

H,(x) = {y E E ](x, y) E n} ,  for x E E, 

H2(y) = {x E E ](x, y) E H}, for y ~ E. 

Since for every x E E, H,(x) = GM(x) n E, m (H,(x)) >-_ (3/4)m (E), and we 

have 

(m x m)(H)= fE m[H'(x)]m(dx)>- ~[m(E)]< 

Let B = {y E Z ] m [n2(y)] = (1/2)m (E)}; then 

3 [m (E)I -<_ (m × m) (n) 

= fs m[H2(y)]m(dy)+ fE,~ m[H2(y)lm(dy) 
1 < m (E)m (B) + "~ [m (E) - m (B)]m (E). 

Hence m(B)>=(1/2)m(E)>O. Furthermore,  if x E B  and y EB,  then 

m [Hi(x)] ---> (3/4)m (E), and m [H2(y)] ---> (1/2)m (E),  so that m [Hi(x)  n Ha(y)] -- 

(1/4)m (E).  Hence if x ~ B and y E B, 
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l , 
,<2M = 2M - 1 ll(x)flH2(y) i-~M i<~,'f 

> 1__3__ 1 , . ( E ) > 0 .  
= 2 M  - 1 M 2 4 

We deduce f rom L e m m a  1.1 that B is a small set for T and V. 

Since B is small for T, given any n, Xi<,T ~ 1B is a small function for T;  hence 

B,  = {Ei<nT~la => 1/n} is a small set for T. Since T is irreducible, X = l im,~B,.  

Similarly, X = lim,,~C,, where each set C. is a set small for V. Hence  

X = lim/'~(B, n C,),  where each set B,  N C, is small for both T and V. [] 

For any set E and any r, set L , (E)  = ~fl s u p p f  CE}  A L,. We say that a set E 

is absorbing under an L, opera tor  S if f ~ L,(E) implies Sf E L,(E). 

| .4. LEMMA. Let T and V be the Lp and Lq operators induced by the transition 
measure V(x, A ). For every f E L~, {T~f = oo} is absorbing under T, and for every 

g E L~,{V®g = oo} is absorbing under V. 

PROOF. We prove that if f E L~, {T~f < ~} is absorbing under V. Indeed, let 

g E L~(Ak)f3 L~i(Ak), where Ak = {T~f <- k}. Then 

f VgT~fdm=f g~,,~ T"fdm<=kf gdm, 

which clearly implies that supp Vg C {T®f < oo}. Since every function of L ~(Ak) is 

an increasing limit of functions of L q(Ak) N L ?(Ak ), and since Ak = {T~f < oo}, it 

follows that {T®f<oo} is absorbing under  V. Let h E Lp({T®f= oo}); since 

for any g~Lq({T®f<~}), f ( T h ) g d m = f h ( V g ) d m = O ,  it follows that 

supp (Th) C {T®f = ~}. Similarly one shows that { V~g = oo} is absorbing under V. 
[] 

An L, -opera tor  S is called conservative if for any non-null function f E L ,  +, 

{S®f = 0 or oo} = X ;  S is called dissipative if there exists a non-null function 

f E L ,  + such that {S®f < oo} = X. Let V(x, A)  be a transition measure inducing 

irreducible operators  T on Lp and V on Lq; then either V and T are both 

dissipative, or V and T are both conservative. Indeed, assume that V is 

irreducible and dissipative; let g EL~ be such that X = { 0 <  V®g <oo}. Let 
+ h= V®g; clearly Vh=<h. Choose f E L p  such that O<ffhdm <oo; then 

f f  V®g dm= f (T®f)g dm < oo implies that {T~f < oo} D support  g. Since {T~f < 
oo} is absorbing under V, we have { T ® f < ~ } =  X, which proves that T is 

dissipative. A similar argument  shows that if T is irreducible and dissipative, so 

is V. Fur thermore ,  an irreducible opera tor  is either conservative or dissipative. If 
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V and T are both irreducible and conservative, then V ( x , A ) ,  V and T are 

called regular. 

Let ~ be a ring of sets; a finite, non-negative, finitely additive set-function on 

is called a charge. A charge h on ~ is called a pure charge if h does not 

dominate  any non-trivial measure /z on ~.  

A charge h on a ring admits a unique decomposit ion (Yosida-Hewit t  

decomposit ion [23]) )t = / z  + rr, where /z  is a measure and rr is a pure charge; to 

see this, set 

t x ( A ) = i n f { ~ A ( A i ) I A = ~ A " A ~ E f f ~ }  ,=, 

It is known, and will be used below, that a pure charge on a or-algebra s¢ is 

e-singular with respect to every measure it:  'de > 0, ::lC E ,ff such that ~r(X) = 

7r(C) and m ( C ) <  e (cf. [23] and e.g. [22]). 

The following lemma shows how the existence of a subinvariant (invariant) 

positive function for the opera tor  V can be deduced from the existence of a 

charge subinvariant (invariant) under T. A similar lemma is obtained exchanging 

the roles of V and T. 

1.5. LEMMA. Let V (x, A ) be an irreducible transition measure. Let B be a fixed 

non-null set of finite measure, and denote by ~ the ring of sets A such that 
l a E TB. Suppose that A is a positive linear functional defined on TB, such that: 

(a) VA E 9~, A(TIA) - -A(1A) ;  

(b) V A  • ~ , m ( A ) =  0 ~ A ( 1 A )  = 0; 

(C) VA CB, m ( A )  = 0  ¢:> A(1A) = 0. 

Then there exists a function g such that 0 < g < oo a.e., and Vg <= g. I f  V(x, A ) is 
regular, then Vg = g. 

PROOF. Let A be the charge defined on ~ by A ( A ) = A ( 1 A ) ,  and let 

h = / z  + 7r be the decomposit ion of h into a measure and a pure charge. Notice 

that since T is irreducible, for every set A ~ ,d, A = l im/~A f3 B,, where the 

sets B,  = {1/n <-_ E,<.T '  1B} are in 9~. Hence  ~ generates ~¢. Still denote  by/z  the 

unique extension of ~ to the or-algebra M, and let t2 be the measure  defined on 

• 1 by 12(A) = f TIAdtz. Given any A E ~ ,  there exists a sequence f , /~T1A of 

positive R-measurab le  step functions. Then 

/ 2 ( A ) =  lim/~ f f,,dtz ~ lim,Z f f,,dA <= A(T1A) ~ A ( A ) = / z ( A ) +  7r(A). 

Hence  the pure charge 7r dominates  the positive measure (/2 - tt)+; this implies 
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/2 =</z on ~,  and hence /Z =</.t on M. Condition (b) implies /x ,~ m. Since 

X = lim/~B., ~ is o'-finite; set g = dlx/dm. For every A ~ M, 

fA Vgdm = f gT1Adm = f Tl"d# <--~z(A)= f ,  gdm; 

hence Vg <= g. It remains to show that g > 0  a.e. We at first prove that the 

restrictions of p. and m to B are equivalent; let ~ be the a-algebra of subsets of 

B. Assume that m is not absolutely continuous with respect to/~ on ~3, and let 

A E ~  be such that t z ( A ) = 0 a n d  m ( A ) > 0 .  Given e, 0 < e < m ( A ) , c h o o s e  

C E ~  such that m ( C ) < e  and r r (B)=Tr (C) .  Then m ( A \ C ) > O  and 

A (A \C)  = tz (A \ C ) +  ~ (A  \C) = 0; this contradicts property (c), hence B C{g > 

0}. Since V]'E L~, f Tfgdm = f fVgdm <=ffgdm, the set {g = 0} is absorbing 

under the irreducible operator  T; hence {g = 0 } / X  implies g > 0  a.e. 

Assume that V is conservative; then if h = g - Vg is a non-null function, and 

h ' E  L~, 0=< h'=< h, one has for every n 

V ' h '  <-_ ~ V'h  = g - V"g _-< g < ~ a.e. 
i < n  i < n  

It follows that g = Vg. [] 

2. Existence of invariant measures 

In this section we assume that the operator  V (hence T) is regular, i.e., 

irreducible and conservative. We give necessary and sufficient conditions for the 

existence of an "'equivalent invariant measure".  We write T" for (1/n)Zi<,T j. 
Recall that VA is the space of functions that "can be beaten by 1,," - -  precise 
definition is given above. 

2.1. THEOREM. Let V(x, A)  be a null-preserving regular transition m e a s u r e  

satisfying the (NS) condition. The following conditions are equivalent: 
(1) There exists a sequence of sets X~ ,,~X such that for each k the sequence  

(lx, T" lxk) ,  is uniformly integrable. 

(1') There exists a sequence of sets Xk ,,~X such that for each k the sequence 
(1 x~ V" 1 x~ ), is uniformly integrable. 

(2) There exists a sequence of sets X~ ,~ X such that for each k the sequence 
(lxkT"lxk), is uniformly integrable. 

(2') There exists a sequence of sets Xk ,,~ X such that for each k the sequence 
(l x, V~I xk )n is uniform ly integrable. 
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(3) There exists a sequence of sets Xk ,,~X such that for each k and each 

f E Txk, liminfl T"f[ <oo a.e. on Xk. 

(3') There exists a sequence of sets Xk ,,~ X such that for each k and each 

f E  Vx~, liminf I V " f l < ~  a.e. on Xk. 

(4) There exists a sequence of sets X k / ~ X  such that for each k and each 

B CXk, 

1BT"IB 

~'~ T i 1B 

converges to zero in measure. 

(4') There exists a sequence of sets Xk , ,zX such that for each k and each 

B C X k ,  

1BV"IB 

~] V~IB 

converges to zero in measure. 

(5) There exists a sequence of sets Xk ,,~X and an integer 6 > 0 such that for 

each k and each B C X~, 

limll lxk(T" 1B -- T"+~ 18)11, = O. 

(5') There exists a sequence of sets Xk / ~ X  and an integer ~ > 0 such that for 

each k and each B C Xk, 

limll lx~(V"l ,  - V"+81B)H, = 0. 

(6) There exists a positive measurable function u, 0 < u < 0% such that Tu = u. 

(6') There exists a positive measurable function u, 0 <  u < ~ ,  such that 

V u = u .  

PROOF. The chain of implications is: (1) ~ (2) ~ (3) ~ (6') © (1') 
(2') :ff (3') ~ (6) ~ (1), (4) ~ (6') ~ (5), and (4') ¢:> (6) ~ (5'). Obviously 

(1) ::> (2) and (1') :ff (2'). Because of the symmetry in the statements and proofs, 

we will only show (2) ~ (3), (6) ~ (1), (6) ~ (4') and (6') ~ (5). Then to give a 
unified proof of implications (3) ~ (6'), (4) ~ (6') and (5) ~ (6'), we will prove 
that under one of the conditions (3), (4) and (5), there exists a non-null small set 
B such that 1B T " IB / E~ ,T ' IB - -*O  in measure, which in turn implies (6') as 

shown in Lemma 2.3. 
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(2) ~ (3): 

2.2. LEMMA. 

N, 
Let ( a. ) be a sequence of positive numbers ; then for every integer 

¼2 l iminf a.+j -< l iminf a,. 
/=l i=l 

PROOF OF LEMMA. Indeed, let a < b < lim.inf(1/N)Y~'=~ a,+j. There exists no 

such that ( l /N)  E~'=I a.÷, = b if n >-_ noN. For every n, write n = Nq, + r, where 

q., r. are integers and 0-< r, < N. Then 

qM - 1 

1 ~ ,  1 q . - n o  
-- ~l~ a, > E (aNj+l + ' ' "  + aNj+N) > b > a 
n i=l = N ( q .  + 1) j=.0 q .  + 1 = 

for large values of n. 

Hence  lim.inf(1/n)E~=l ai _-> a, which implies the desired inequality. [] 

Let f ~  Tx~, IfI<=KY.,~NT ' lx , ;  then by Lemma  2.2, 

liminf[ T" f [<  K ( N  + l ) l i m i n f T " (  + I ,~N ~ T ' lx~)  

< = K ( N + l ) l i m i n f T " l x ~ <  oo a.e. on Xk, 

the last inequality following from (2) by Fatou's  lemma. 

(6) ::> (1): Since m is o,-finite, there exists a sequence of sets Ak, such that 

4 ~ 7 X ,  and m ( A k ) < o o  for all k. Let u be as in (6), and set Xk = A k  n{1 /k  <= 

__-< k}. Then Xk ~ X ;  fur thermore 

lx, T"lx~ <-- k lx~ T"u <- ku lx. <-_ k 21A~. 

(6) ~ (4'): Let 0 < u = Tu E At*. Define a transition probability P by 

1 VxeX, VAEM, P(x,A)=-~-~T(ulA)(x). 

For every f E L1 and g E L=, denote by fP the Lraction and by Pg the L=-action 
induced by P. For every function f ~ Ll and every A E M, 

f A f  Pdm = f f (x)P(x ,  A ) m  (dx) 

f 
! T(ulA)(x)m(dx) u(x) J 

=fa 
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Hence [P = u V(f/u), so that for every k, [pk = uV~(f/u). Let Yk ,'~ X be a 

sequence of sets of finite measure. Set Xk = Yk n{u--< k}, and let B CXk for 

some fixed k. Then )c = u 1B E La; by the Chacon-Ornstein lemma ([1], lemma 2; 

or [5] p. 22), [P"/E,~,fP'= V"I~/E,~,V'I~ converges to zero a.e. on B. 

(6') ~ (5): Let 0 < u =  VuEd~ + and P(x,A)=u(x)-~V(ulA)(x). Then 

P(x, A) inherits the properties of the transition measure V(x,A): P(x, A) is 

regular and satisfies the condition (NS). Indeed, let [ be a non-null element of 

L~; choose g _---[, g ~ 0  such that g/u E L~. Then T®(f/u)_~ T=(g/u)= oo a.e. 

implies that [P® = ~ a.e. Since the transition measure V(x, A) satisfies (NS), 

there exists a non-null set G and an integer no such that m {y I d,o(x, y) > 0} > 0. 

Since for any integer n, 

P"(x,a)= fA d~(x,Y)u(x) u(y)m(dy)+-~l fA u(y)V,(x, 

with VT(x,.)±m, the n-step density of P is d,(x,y)u(y)/u(x); thus P also 

satisfies (NS). Hence P has a period 8 (see [17], [5], or [13]). Let X =  

Ct + • • • + C8, every Ci is absorbing under the L1 operator ps, the restriction of 

p8 to C~ is irreducible, and the Ll-operator  P carries C~ on C2, . ' - ,  C,-1 and C8 

and Ca on C1. The set G intersects at least one of the sets C,, say C1; set 

K(x,A)=PS(x,A), VxEC~, VACC~. 

Then K(x,A) is a transition probability on C1; if f~L®(CO, denote K[= 
f K(x, dy)f (y) ,  and if g ~ LI(C1), and y ( A )  = Sg(x)K(x, A)m(dx), A C CI, set 

gK = dy/dm. Every power of K(x,A) is irreducible. 

We now check that K(x, A) satisfies the essential Harris condition (EH), i.e., 

for each null-set N C C~, there exists a point x E C~\N and an integer n > 0 such 

that the measure K'(x, .) is not singular with respect to m (see e.g. [5]). 

Notice that (NS) and (EH) are equivalent. Indeed if (NS) holds, then for any 

null-set N, every x E G O N c is such that K"°(x, .) is not singular with respect to 

m. Conversely let N={x 13n, K'(x,.) is not singular w.r. to m}. Since the 

densities are jointly measurable, it is easy to see that N is measurable. If N were 

a null-set, then by (EH) there would exist x ~ N and an integer n such that 

K"(x, .) is not singular with respect to m. This contradicts the definition of N. Let 

p,(x, y) be the n step density function of P(x, A). By (NS), given any null subset 

N of C~, since c l n  G is non-nuU, there exists x E ( c ~ n  G)\N such that 

{y I p,o(x, y ) >  0} is non-null. Hence there exists a > 0 and a non-null set A of 

finite measure included in {y I P,o(x, Y) --> a}. Since P is irreducible, there exists n 
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such that inf (lAP", lc,) ~ 0. Let B be a non-null  subset of C~ such that for some 

b > 0 ,  b18 =< l a p  ". Then  

1B(y)P"o+"(x, dy) >- _ f p,~(x,y)P"lB(y)m(dy) 

=> ( e ° l o ) ( y ) m ( a y )  = af. abm(B)>O. 

Since x E C1 and B C C~, no + n is a multiple of  the per iod 8 ; hence  K acting on 

C, satisfies the condit ion (EH).  Let f E  L,(Cj) be such that f f dm  = 0; then by 

Orey ' s  theorem,  IIfK" ]11--->0 (see [17], and [19] theorem 4.1). For  any set 

B C C ,  N{u  - k} of finite measure,  set f = u(T  ~ 1 8 -  I s )  where  0 <  u = Vu. 
Then 

f l f ldm <= f u(T~l,~)dm + f ulBdm =2 f ulBdm <=2km(B). 

Fur thermore ,  f fdm = f u (T  ~ ls)dm - f u 1Bdm = 0. Hence  

IluT"~(T 8 1B - 1B)II~ = [I fP"811, --> O. 

Given any i = 1 , . . . , 6  and any set B of finite measure,  B CCI N{u -<k}, set 

f=u(T2~-'+~lB-T~-'+ll~); f ~ L d C 1 )  and ffdm = 0 .  Hence  for any j =  

0 , . . . , 6 -  1, 

H u (T'°+2'~+'l,~ - T'"+"'÷'IB)Irl  = IIfP"~+'-'+'ll, --< Ill e"~ It,---> 0. 

Since ET=~ C, = X, one has that for every set of finite measure  B C{u -< k} and 

every j = 0 , . . . ,  8 - 1, II u (T'"*""" 1~ - T "~ +' 1 o )111 ~ 0. Let  Yk/" X be a seq u en ce 

of sets of finite measure,  and set X~ = {1/k <= u _~ k} N Yk. Then Xk ~ X  and for 

every j = 0 , . . - , 8 - 1 ,  f rom [lu(T("÷~)~÷ilx~-T"~+Jlx~)lll--->O, we deduce  

Illx~(T'"*') '+'l×~ - T "~÷' lx~)ll,--~0. 

2.3. LzMrvta. Let V(x, A )  be an irreducible transition measure. Let B be a 
non-null set small for T and such that 

(2.4) 1BT"I~ converges to 0 in measure. 
T ~ 1B 

Then there exists a function u such that 0 < u < oo and Vu <= u. If  V(x, A )  is 
regular, then Vu = u. 

PROOF OF LEM~tA 2.3. Let  L be a Banach limit (see e.g. [3]). Let  f E T~, f _-> 0; 
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choose K and N fixed and such that f<=KZ~NT'IB. For every j~_ N, 

developing the expression Z~,_jT'  (Z,~NT r 1B) one obtains at most N + 1 terms 

T k lo for a fixed k; therefore 

(2.5) ~, T'f<=K(N+I) ~ T ~ I . < - K ( N + I ) ~  T'IB. 
i ~ n - - j  k ~ n  t + N  i~_n 

It follows that (fa[Z~,_jT~f/Z,~.T ' 1B]dm) is bounded. Set 

) Ai(f) = L '~--i dm , 
T i 1B 

j ~ N ;  

we show that M(f)  = AN(f). Indeed, clearly A,(f)-< AN(f). Conversely, the ratio 

in (2.4), being bounded by 1B, converges to 0 also in L1. Hence 

AN(f) = L ' ~ t dm+ ~ - i ~ - N  dm , 
ET'IB ~_,T'I. 
i ~ n  i ~ r t  

and by a computation similar to (2.5), 

T'f 
fs  ~-j+~a,-~-N dm <=K(N + l) ~ fB T"-__~_I~_ , 

i ~ n  k<=rt 

which converges to zero. Set for positive f E To, Af = AN(f), and extend A by 

linearity. A is a positive linear functional on TB ; we will show that A satisfies the 

assumptions of Lemma 1.5. Let A be a set such that 1A E TB, 1A ----< K Z,_~N T' ls. 

Then 

A(TIA) = AN+~(T1A) 

= L ~ _ . - N - 1  dm 

i n n  

TI1A 

22 T i l s  ~ T i l ,  

_-< AN(1A) 

= A(1A). 
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Obviously re(A) = 0 implies A(1A) = 0. Let A C B  be a non-null set; since B is 

small for T, there exist K and N such that l s  --< K Y.,~N T ~ 1a- Since 0 < m (B)  = 

A(1B)_--<- KE,~NA(T ~ 1A)----< K(N + 1)A(la),  the assumptions of L e m m a  1.5 are 

satisfied. []  

(3) ~ (6'): By Theorem 1.3 there exists a small set A. Assume (3); one of the 

sets X, 71 A = B is non-null. The set B is small and such that for every [ C Ts, 

l im in f lT" f l  < ~  on B. We will show that 

T"IB 
lira 1B - -  - 0 a . e .  

T i 1~ 

Otherwise there would exist e > 0  and a non-null set A C B  such that T"IB > 

e Y,~. T '  1B infinitely often on A. The proof is now in part similar to that of 

lemma 2 [1]. For every n _-> 0, set 

a.= T " l B - e ~ .  T'IB,  A.={a.>O}NB. 
i<=n 

Then a .+ ,+  e l 8  = Ta. <= Ta+. implies a.++~+ e IA.., = 1A.+,(a.+~+ e ) -  -< Ta+.. 
Summing, 

e Z  la . . ,  <---  Z a:+ ~ Ta:+(1-e)lo.  
n ~ - N  n N N  n N N  

Since A C l i m s u p A , ,  E ~ N  1A.., ---~oo on A. By Egorov ' s  theorem the con- 

vergence is uniform on a non-null subset A '  CA.  Since B is a small set, there 

exist a and K such that la <=a Y~KTil,v. Given M, choose N so big that 

M1A,<= e~,.~N la  .... and set f =  E,_-~a]-. Then 

Mla,<-_e~_. l~, . . ,<=Tf-f+(1-e)l .<-_Tf-f+(1-e)a~_. T'IA, .  
n ~ N  j ~ K  

Applying E,~, T', we obtain (cf. (2.5)) 

<-_T"+~f+a(1-e)(K+l) ~ T'IA,. 
i<<-n+K 

Choose M > o~(1- e)(K + 1); then 

+ 1)1  T'IA 

n + K  

T'IA, 
i = n + l  
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E,__-.T 1A,---~ 00 and This brings a contradiction since ~ a.e., 

f + a ( 1 - s ) ( K + l )  ~ T ' I A , E T B .  
i : ~ K -  I 

Hence the assumptions of contradiction 2.3 are satisfied, which implies the 
existence of 0 < u < oo such that V u  = u. 

(4) ~ (6'): As in the proof of the previous implication, we may and do 
assume that B is a non-null set small for T such that B CXk for some k. The 

assumptions of Lemma 2.3 are clearly satisfied by B, which implies the existence 
of u, such that V u  = u and 0 <  u <oo. 

(5) =), (6'): As in the previous implications, we may and do assume that B is 

a non-null set small for T, and B CXk for some k. We will show that the 

condition (2.4) is satisfied by B. Assume not; there exists a > 0 and an infinite set 

D of positive integers such that 

Fix K and /3 >0 ,  and choose N ( K , ~ ) =  N such that 

V n > N ,  V k < = K ,  II 1 B ( T " - k " I .  -- T "  ls ) [ I ,  --</3. 

Then, using Chebyshev's inequality, 

Let n=>N, n E D ;  then 

m [ kG=l (B  A { T " I B  

° 

>-- Ot~,, TI1B I-I T " - k t l a  < ' ~  l a  <: 0t 

Hence, using also (2.6), we have 

11 k~ = 2  ~ TilB 

~1 = 2 i ~ , ,  Ti IB f"l B A 

>- a - 2K[3 

Ol 
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Given e > 0, choose K such that Ka/2 > 1; then choose/3 such that (2K/3/ot)< 
a/2, and let n E D be larger than N(K,/3). Then by (2.7) on a subset of B of 

measure larger than a -  (2K/3/a)>-a/2 > 0 ,  one has 

K 
O/ 

E T"-ks1B >K-~'~ T ' I B > E  T'IB, 
k = l  = 2 i ~ n  i f .  

which is a contradiction. []  

REMARK. In Theorem 2.1 conditions 1-5' can be replaced by equivalent 

conditions expressed in terms of non-null small sets. For  instance, condition (4) is 

replaced by (4): There exists a non-null small set B such that 1B (T" 1B/E,~.T' 1~) 

converges to zero in measure. There are analogous equivalent formulations of 

other conditions. 

Finally, the invariant function, if it exists, is unique. The proof of uniqueness, 

given in [20], also applies in present conditions. 

3. A counterexample 

We now give an example of a transition measure which induces an L r o p e r a t o r  

T having a o--finite (in fact even finite) invariant measure, but such that the 

boundedness condition (B) introduced in [20] fails; thus this condition is not 

necessary. Recall 

(B) Vh EL~,  liminf I T*"h I < ~  a.e. 

The example will be constructed on a discrete measure space; in this setting both 

implications (3) f f  (6') and (3') ~ (6) have been proved in [12]. 

3.1. EXAMPLE: Let (X, aC, m) be the set of integers with the counting 

measure rn. Let (a , )  be a sequence of strictly positive numbers such that 

a - ( n + l )  z2"<°°,  E a - ( n + l )  z22"=~,  and • o t . = l .  
. ~ 0  .--~0 n ~ O  

(Take e.g. (n + 1)-'2-", and normalize.) Let (p~j) be the stochastic matrix defined 

for each n > 0 by 

po.2" = a .  ; p2",2"+1 = p2"+1,2"+2 . . . . .  p2 . . . .  z,2 . . . .  1 = p2 .... 1,o = 1. 

In words the process at zero takes on values 2" with probability a,, then moves 

deterministically to 2" + 1,2" + 2,.  • . ,2 "÷1- 1,0. 
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W e  show tha t  t h e r e  is a p r o b a b i l i t y  m e a s u r e  rr such tha t  r rP  = rr. rr has  to  

satisfy t he  fo l lowing  r e l a t i ons :  

F o r  eve ry  n => 0, Y~rr~p~-= rropo.2. = ~'o~, = rr2-; for  eve ry  n a n d  eve ry  j, 

1 =< j < 2", rr2,+j_~ = £~r~p~,2-+j = ~'2-+j. T h e  v a l u e  rr0 is d e t e r m i n e d  by  the  e q u a t i o n  

rrk = ~ro+ rr2-+, = fro 1 + a . 2 "  = 1. 
,k ~ 0  n = 0  j = 0  Tt = 0  

T h e  v e c t o r  ( u , )  d e f i n ed  by:  

Uo = 1, u2- -- uz-+~ . . . . .  u= . . . .  ~= ( n  + 1)-22 -" 

satisfies t he  two r e l a t i ons :  

7r....2 : o o "  Vi, ~ P ' i U ' / U ' < = ~  a " ( n  + 1)z2"; ~" u, 
i ,I 

I n d e e d  £ p o ~ U o [ U j = E , a , u d u z . = E , a , ( n + l ) ~ 2 " ;  a n d  if i = 2 " + k ,  0 _ - < k <  

2" - 1, t h e n  £jpqu~/u i = u~/u~+l = 1 <= Y . a , ( n  + 1)22"; if i = 2 " + ' -  1, £jpou~/u ~ = 

uz . . . .  ,/Uo = 2-"  -< E a ,  (n  + 1)22 ". F u r t h e r m o r e ,  Y~m/u, = fro + 

r roG,a ,2Z"(n  + 1) z =  ~ .  D e f i n e  a t r a n s i t i o n  m e a s u r e  t by  t ( i , { ] } ) =  t0 = pqu,/uj. 

T h e  ma t r ix  (tq) i n d u c e s  an  L® o p e r a t o r  V ;  i n d e e d ,  for  every  i, £jtq =< £ a , 2 "  < 

o0. T h e  c o n d i t i o n  (NS) is o b v i o u s l y  sa t is f ied by  (tlj), a n d  s ince  for  eve ry  i, 
e l  n . gitquj = u~Y.ip~i = u~, u is a f ixed p o i n t  of V. F o r  eve ry  n, t q -  pqu~/uj ,  h e n c e  t is 

i r r educ ib l e ,  c o n s e r v a t i v e  a n d  a p e r i o d i c  b e c a u s e  P is. T h e  P - i n v a r i a n t  p r o b a b i l i t y  

rr is such that  rrj = l im ,p~  for  eve ry  i ([12]). S ince  Y. rri/u j = ~ ,  for  eve ry  fixed i, 

l i ra ,  Y~jp ~/ui = ~ ,  which  impl i e s  tha t  V" 1 ( i )  = £j  t ~ c o n v e r g e s  to  ~.  T h u s  (B) fails. 
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